
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 7 – Analysing
Relational Data

Part 1 (maybe 2) of 4ish

1

Structure of the Course

“Core” framework features
and algorithm design

A
n

al
yz

in
g

T
ex

t

A
n

al
yz

in
g

G
ra

p
hs

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a
 M

in
in

g

2

In the beginning…

A brief history of software and enterprise
architecture

3

Stage 1, The Early Years

Monolithic Applications
- No external dependencies,

nothing
- Just the program

4

Stage 2, Specialization

Front End

• User Interface
• Often means “webpage”

Back End

• Business Logic
• Or any kind of logic, really

• “Separation of Concerns”
• Often means “Database”

Just because it’s used to mean that “often” doesn’t make that the definition!
Sometimes confused with “Client-Server” but front and back end splits can happen on the
same machine. No need for remote access

5

Edgar F. Codd

• Inventor of the relational model for DBs

• SQL was created based on his work

• Turing award winner in 1981

6

SQL History

• Codd created relational language
• IBM didn’t use it, they made their own, SEQUEL

• Structured English QUEry Language
• It’s also the sequel to SQUARE

• Larry Ellison liked it, and used it on Oracle
• SEQUEL was trademarked, so the query language is SQL –

Structured Query Language
• The SQL standard says that you must not pronounce it as

“sequel” or you might get sued

7

SQLite also belongs in the middle tier…
Basically, the top ones are real RDBMS. (Though old MySQL was not great…it did not have
ACID compliant transactions, and it ignored foreign key constraints. Since incorporating the
InnoDB engine it’s been promoted to a real database…and now Oracle owns it and call it
HeatWave or whatever…I’ll stick to Postgres thanks)

The Postgres Elephant doesn’t mean it’s connected to Hadoop. “An elephant never
forgets” is the reason for both projects using an elephant. Also, they’re big, Hadoop is for
Big Data.

8

Excel is not a database.

Dwarf Fortress Steam Release - Dec 6th, also the last day of classes! Coincidence? Yes.

9

OK, I’m done roasting Excel. For now.

Really this is user error. If you don’t want it interpreting fractions as dates, then, uhhh,
don’t declare the column as “Auto”?? Declare it as numerical.
Sorry…I hate jokes where the punchline is “I’m incompetent lol”. It’s not hard to set the
clock on a microwave, either, damnit.

Although: There’s an argument that “Auto” is not a smart default. It’s a spreadsheet. Why
is not numerical the default?

10

Reminder: Why Business Wants Data

Among other things, “Business Intelligence”

“An organization should retain data that result from carrying out
its mission and exploit those data to generate insights that
benefit the organization, for example, market analysis, strategic
planning, decision making, etc”

I think this is quoting Jimmy Lin? Because in HIS slides there are not quotation marks, but
in Ali’s there are?

11

BI on the BE

Users Front End

Sorry…”Business Intelligence on the Back End”

Back End Database BI Tools Analysts

12

BI on the BE

Users Front End Back End Database BI Tools Analysts

Why is this app so
slow???

Why is this analysis
taking so long???

13

Database Workloads

OLTP (Online Transaction
Processing)

• Most Applications:
• E-Commerce, Banking, Reddit, etc.

• User Facing: Must be fast, low
latency, concurrent
(many users)

• Tasks: small set of common queries
• Access: Random reads, small writes

OLAP (Online Analytical
Processing)

• BI and Data Mining
• Back-End: Batch workloads, low

concurrency
• Tasks: Complex Analytics (Ad Hoc)
• Access: Full Table Scans, Big Data

These are another of Codd’s contributions

14

Two Patterns,
One
Database

Nobody is happy

Large OLAP workloads will consume resources

Variable Latency, Variable
Concurrency

“ERROR: INSUFFICIENT
RESOURCES, TRY AGAIN LATER”

Cannot tune DB for either access pattern

15

Solution: Data
Warehouse!

16

Data Warehousing

Users

Front End Back End Data Warehouse BI Tools

Analysts

Database

ETL

Extract, Transform, Load

Tuned for OLTP Tuned for OLAP

The data warehouse is also a database. Tuned for mass storage, and OLAP queries
(typically full table scans, rarely the same query twice)

Extract – Pull data from database
Transform – Put it into a different schema that’s more suited for OLAP / BI / Datamining
Load – Put it into the data warehouse.

The ETL process is also called “Data ingestion” sometimes. Gross.

17

ETL

• Extract – Self Explanatory

• Transform
• Clean and validate data
• Schema Conversion
• Field Transformation?

• Load – Self Explanatory

You don’t want bad data slipping in

I’m frankly embarrassed it’s taken so long for a Data reference!

If the OLTP database has constraints, how can bad data slip in?
Well, the Analysists might have different constraints, different definitions of “validated” and
“clean”.
Plus, the OLTP might not do much validation, in the name of speed.

18

ETL – When to perform

• You might be able to do a rolling
ETL where updates from the
OLTP database are immediately
sent to the warehouse

• You might also just have a batch
transfer that happens on a daily
basis

• Since the BI queries are slow,
stale data is OK

19

Typical OLTP Schema

• Captures relation
between items

Arrow Direction:
Foreign Key points to
Primary Key

Customer Billing

OrderInventory

OrderLine

20

Typical OLAP Schema
“Star” Schema
• Center – Fact Table
• Points – Dimension

Tables

Dim_Customer

Dim_DateDim_Product Fact_Sales

Dim_Store

Dim_Order

Adding this makes it a “Snowflake” Schema

Fact_Sales is the primary table. It contains all elements that do not relate to the other
rows.
Any values that DO relate / correlate with other rows will “dimension” attributes – foreign
keys to a dimension table.

In this example – When you sell a Widget, that goes into Fact_Sales.
Things that are unique to the sale will go in this table. (E.g. the number of items sold)
The fact that it was a widget will be a foreign key into the product Dimension table.
Which store it was bought at will be a foreign key into the store Dimension table.
Same with which customer, which order this sale was a part of, what day it was sold on. It’s
all up there, on the slide.

21

slice and dice

Common operations

roll up/drill down
pivot

OLAP (Hyper) Cubes

Many OLAP queries are about getting chunks (whether an individual cell, a row/column, a
plane, etc) of an n-dimensional hypercube!

22

Why Star?

BI and Data Mining queries are ad hoc

The schema cannot be designed around ad hoc queries

Why?

Sorry, was that not obvious? You don’t know what they are yet!

23

“There are known knowns; there are things we
know we know. We also know there are known
unknowns; that is to say we know there are some
things we do not know. But there are unknown
unknowns – the ones we don't know we don't
know…” – Donald Rumsfeld

Source: Wikipedia
24

At the time (Iraq War) this quote got made fun of a lot. He was absolutely ROASTED.
Mostly by Stewart and Colbert. Actually no, it was near universal. Out of context, it’s a
pretty good quote though. It’s true! It’s also pretty ancient wisdom

He was roasted because this was an answer to the question “What evidence do you have
that Iraq is supplying WMD to terrorists?”
That’s not an answer at all. If it means anything, it means “none whatsoever”. Anyway…it’s
relevant because “known unknowns” and “unknown unknowns” is relevant…here, let’s see
if we can’t use a better quote…

Also, like, this slide goes back to Jimmy’s first offering of this course. I dunno, it feels rude
to remove it.

24

Ahh, that’s better, Persian Poet Ibn Yamin had basically the same thing to say.

This slide goes back to Ali’s time running the course.

25

-Socrates

“I know only one thing: that I
know nothing”

And this is MY addition.
If we switch instructors too many times this lecture is going to be all philosophy…this isn’t
as relevant, maybe I messed up trying to be cool...

I think there’s still a good takeaway though.
Accept that some things you will not know. You can’t plan for the unknown, so plan to be
flexible.

26

OK, very philosophical but…why a star?

It supports common OLAP queries efficiently. That’s all.

• Known Known – Something you already know, don’t need a query
• Known Unknown – Something you don’t know, but know you want

to know. You can write the query now
• Unknown Unknown – Something you don’t even know you

want to know. You cannot write the query

Alright, slide count 4 for the simple idea “You cannot tune a database for a query that
doesn’t yet exist”
You can, however, tune it for a fairly broad class of queries
The ol’ slice’n’dice / pivot table presented a few slides back with the hypercube!

27

Users Web App

Back End

Data Warehouse BI Tools

Analysts

Database

Users Phone App

Another AppUsers Back End Database

The data warehouse can pull from multiple backend databases. That’s why it’s a
warehouse. Fill it to capacity!

28

“On the first day of logging the Facebook clickstream, more than 400 gigabytes
of data was collected. The load, index, and aggregation processes for this data
set really taxed the Oracle data warehouse. Even after significant tuning, we
were unable to aggregate a day of clickstream data in less than 24 hours.”

Jeff Hammerbacher, Information Platforms and the Rise of the Data
Scientist.
In, Beautiful Data, O’Reilly, 2009.

29

Problem: Data generation rate exceeds data ingestion rate. Or “ACID” reflux.

(It’s a database joke. A good database requires ACID = “atomic, consistent, isolated,
durable” . I think this is in and of itself also a pun? Acid is the opposite of base)

29

TL;DR?

• Facebook was generating
a LOT of data

• Oracle could not keep up
• Oracle said “Build a big

cluster and then pay us
$+inf.0 and it’ll scale”

I may have rounded the dollar amount up a bit, but not by a lot.

30

What Changed?

We covered this in Lecture 1!

• Disks are cheap now – Cheap to just save everything and worry
about importance later

• Data Mining – something that doesn’t appear valuable might be
• Businesses now see the value of analytics

• Social Media – People are generating their own data now

31

What queries does Facebook do?

OLTP
Update Profile
Add Friend
Like, comment
…

(Basically everything a user can do)

OLAP
Feed Rankings (“The Algorithm”)
Friend recommendations
Demographic Analysis
Engagement (“clickstream”)

(All the non-social-media BI stuff
too)

Some of the OLAP stuff ends up user facing…in a way. Finding friends for you is a long and
difficult process (BURN) but runs in the background. Every so often (whenever the batch
finishes) the front end can be updated with new suggestions.

32

Users Web App

Back End

Data Warehouse BI Tools

Analysts

Database

Users Phone App

Another AppUsers Back End Database

Hadoop

Data Scientists

Big Data Tools

What if it wasn’t a giant Oracle database, but Hadoop? What if indeed.

A bunch of analysts would be out a job, for one thing. Unless…

ELT? Extract, Load (onto HDFS), Transform (with a MapReduce job to clean the data up,
etc.)

33

(Not an) Actual Conversation Between Oracle
and Facebook, c. 2009 (colourized)
“You can’t use Hadoop as a data warehouse! Your analysists
don’t know Java!”

“But they know SQL, so we’ll just run SQL on Hadoop”

“That will never work! Huge mistake!”

Oracle now owns Java so you’re still using an Oracle product…technically.

Very conveniently, Oracle’s colour is red, and Facebook’s is blue. Easy contrasting colours!

34

Users Web App

Back End

Data Warehouse BI Tools

Analysts

Database

Users Phone App

Another AppUsers Back End Database

Hadoop

& Data
Scientists

Why not just use a database, though?

35

Databases Are Great…Unless They Aren’t

• Mature Software
• SQL is powerful

But…

• Databases do not scale well
• Oracle and IBM want a LOT of money. SO MUCH MONEY.

Microsoft does too, but are an “also ran” in the database world.
Walmart does all their cloud and database stuff through Microsoft so that they don’t need
to pay Amazon, a competitor, for AWS. Or Oracle. They’re not a competitor, but nobody
likes paying Oracle.

36

Databases are great…
• If your data has structure

• And you know that structure

• Your data are clean
• You know what queries you’ll

run ahead of time
• The Star Schema / Snowflake

Schema isn’t a silver bullet here

Databases are not great…
• If your data has little structure

• Or you don’t know the structure

• If your data has a lot of noise /
mess

• If you’re going data mining / ML
• (You don’t know what you’re

looking for)

Again, Known Unknowns vs Unknown Unknowns

37

What does a BI Analyst Do?

Generate Reports

Create Monitoring Dashboards

Ad hoc analyses
• Descriptive – extract a description of the data
• Predictive – extract a model of the data that will predict future data

Which of these are
Known Unknowns?
Unknown Unknowns?

38

Advantages of
Hadoop
Dataflow over
RDBMS

No Schemas

“Most” OLAP is full-table
scans.

Flexible – Can write imperative
code

HDFS is designed for rapid
ingestion

No Schemas, No Kings, No Lords! Freedom!

Ingestion again…

39

Database people insist:
Hadoop, even with Hive,
is not a data warehouse!

What is it then?

A data lake! Apparently.

40

Data Lakes
• Relational and non-

relational data from
many sources

• No Schema (or “Schema-
On-Read”)

• Low-Cost Storage
• Mix of curated and raw

data
• Useful for:

• Data Scientists
• Data Developers
• Business Analysts

(curated data only)

41

Users Web App

Back End

Data Warehouse

“Traditional” BI Tools AnalystsDatabase

Users Phone App

Another AppUsers Back End Database

Data Lake
Data Scientists

Hadoop/Spark

This is getting complicated!

So, Analysts really want curated data. They can use HIVE, since it’s just SQL like their other
tools. But still prefer a data warehouse approach! So you need both? Maybe. This setup
is sometimes called a “data lakehouse”. Again, apparently.

If the data warehouse is small and dedicated to one team of analysts for a particular aspect
of the business, it’s called a datamart.
So you can have your datalake getting ELT’d, then to another TL to send some clean data
into various department’s datamart. This is giving me a headache.

Also: Spark has SparkSQL, so you can write SQL with Spark instead of using Hive (which
generates MapReduce tasks, with all the benefits and drawbacks that entails)

42

What’s next?
The cloud!

• Managing a data
warehouse / data lake /
datamart / data
lakehouse / data
reservoir is hard work

• I can’t even keep up
with all the jargon

• Can we just…pay
someone else to do it?

Image – Migrating to the cloud

In class I said I didn’t make any of those jargon terms up. I actually did make up “data
lakehouse” but then googled it and it’s also an industry term.

43

“Put it on the cloud” means “rent a server and pay someone to maintain it”

44

Back End

Data Warehouse

“Cloudified” BI Tools AnalystsDatabaseUsers Phone App

Another AppUsers Back End
Database

Data Lake

Data Scientists
Hadoop/Spark

Infrastructure as a Service

(VPS, Cloud Storage, Load
Balancing, Caching)

Oracle Cloud Base / ATP

Amazon RDS

Oracle ADW

AWS S3

I’m getting a lot of milage out of this one slide!

45

The cloud isn’t free.

OK, well, my Oracle Cloud VPS is free. They’re like drug dealers, they want to get you
hooked. Still, 4 ARM cores and 24GB RAM? Score. This isn’t an ad. If it was, I’d tell you my
referrer ID.

Topical: This is Elon Musk right now trying to figure out why Twitter’s AWS bill is so high

46

What’s left?

All we need is to put
those Analysists and
Data Scientists in the
Cloud and the
migration will be
complete!

Please do not try to upload yourself to the cloud, the tech is not there yet.

47

So you don’t have to zoom – Courtesy of CloudTweaks: www.cloudtweaks.com/cloud-
humor

48

HDFS

Execution Layer

SQL query interface

Other
Data

Sources

How all this works…

49

Hive Example!

SELECT a.word, a.freq, b.freq FROM
“shakespeare_wc” a JOIN
“bible_wc” b ON (a.word = b.word)
WHERE (a.freq >= 1) AND

(b.freq >= 1)
ORDER BY a.freq DESC
LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

What’s this doing? “What are the 10 most frequent words in Shakespeare’s sonnets that
also occur in the bible, and what are their counts in both the sonnets and the bible?”

50

Behind the Scenes

Query AST Java Code Hadoop Cluster

Parse Plan Execute

IR

Generate

PRO-TIP: If you remove all the labels, this slide is complete nonsense!

Step 1 – Parse the query -- create an abstract syntax tree
Step 2 – Plan the job – decide how to most efficiently run the query, create an intermediate
representation
Step 3 – Code generation – Emit Java code equivalent to the IR
Step 4 – Execution -- Compile Code and Submit to Cluster

An RDBMS is going to do the same steps 1 and 2. It’s just that instead of then turning the
plan into java code, it just executes is directly

51

Relational AlgebraRelational Algebra

52

Relational Algebra
Primitives

Projection ()
Selection ()
Cartesian product ()
Set union ()
Set difference ()
Rename ()

Other Operations

Join (⋈)
Group by… aggregation
…

53

53

R1

R2

R3

R4

R5

R1

R3

Selection

Select all rows with a gray square.

This is straight up just the “SELECT … WHERE” from SQL

54

How to SELECT in MapReduce

Easy!
Map-side filter
No reducer task

Performance?
As fast as HDFS can load the tuples?
Not quite – also must parse them. Text parsing is slow.

-- Format Matters

Any operators that are map-side only can be pipelined!

55

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

Projection

This is the other half of the “SELECT (col1, col2, …) FROM” SQL syntax

“Project each row into lower dimensional space, keeping only the squares and circles”

56

How to PROJECT in MapReduce

Easy!
Map-side tuple transformation
No reducer task

Performance?
Same as with selection

Fiddly Details
Need to remember column
mappings.
E.g. column 4 is now column 1 in
the projection

Any operators that are map-side only can be pipelined!

57

Rename (ρ)

SELECT (userID u) FROM users;

Renaming userID as u doesn’t matter at the MapReduce level
- MapReduce just sees tuples
- It doesn’t care what column 1 is called

- 1 is 1

58

Union

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

This is also part of SQL. I don’t recall ever using it, but it’s there!

(SELECT ….) UNION (SELECT ….)

59

How to UNION in MapReduce

Hadoop MapReduce has a MultipleInputFile class
- It’s LITERALLY UNION

1 Mapper class per input file
• Can be pipelined with other map-side operations

60

Difference

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

-

This is also part of SQL. I

(SELECT ….) MINUS (SELECT ….)

I did not know this…it’s not common…to me.

61

How to SUBTRACT in MapReduce

Cannot be done on the map side alone

• MultipleInputFiles again – Each mapper has:
• Key: An Entire Tuple, plus “Which Mapper Sent Me”
• Value: Not used
• Sort “RHS” tuples before equal “LHS” tuples

• Reducer
• Remember last RHS tuple
• Emit LHS tuples only if they do not equal the last RHS

This is a modification of merge from merge sort. Neat!

62

Cartesian Product

R1

R2

R3

R5

R1

R2

R3

R4

R5

This is also part of a SELECT statement. It’s not actually a CROSS operator, just write

SELECT table1.thing, table2.thing FROM table1, table2

SQL calls this a type of join (cross join)

63

How to cross in MapReduce

• Don’t

I wasn’t going to!

• Good, don’t

Wow…that family guy episode aired in 1999…were you folk even born then? Does anybody
get it? Anybody? Bueller?

Anyway, when I say don’t, I mean…BIG x BIG = HUUUUUUUUUUUUUGE

In Hadoop, 1 million records is a small dataset.
And yet, a self-join will result in a trillion rows. Have mercy!

Cross Product is an operation of last resort. Only use if it literally no other approach will
work

64

How to cross in MapReduce

If you MUST
• Job setup looks at the splits (partitions) and performs a cross

• File1 = HDFS blocks [1], [2], [3]
• File2 = HDFS blocks [a], [b], [c]
• Cross = [1a] [1b] [1c] [2a] [2b] [2c] [3a] [3b] [3c]

• Custom Reader gets given two files
• Reader given [3] and [a] will:

• Read record 1 from [3], cross it with all records of [a]
• Repeat

• Mapper does nothing (Can be pipelined)

The Mapper does nothing because the custom Reader class is doing all of the crossing, so
the Mapper just reads tuples and emits them again.
Really really hopefully you’re pipelining with a Select to filter tuples.

This is expensive, but something that’s in both PIG and HIVE.

(Spark RDDs also have a .cartesian operator, the same rule applies: Don’t)

65

How to AGGREGATE in MapReduce

The Reduce in MapReduce is often called the “Aggregation Phase”

Every SQL aggregation function is done on the reduce side

We’ve done most of them on the assignments.
COUNT, SUM – Frequencies
MIN, MAX – OK, but we could have! (431 uses MAX for PageRank

convergence)
AVG – That was an example in the slides already

66

Relational Joins

Source: Microsoft Office Clip Art
67

This stock photo goes all the way back to the first offering of the course. A piece of history.

67

(Inner) Join
R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

68

Efficient joins is one of the harder parts of query / schema design

Someone used to “database = a bunch of values” find this part the hardest to grok

69

One-to-One One-to-Many Many-to-Many

Types of Relationships

70

One-to-One Joins

• The easiest there is!

No crossing needed, memory
requirements are minimal

Basically modified merge sort

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

71

One-to-Many Joins

Regardless of exact technique:

For the “One” side –
- Hold Tuple in memory
- Cross with all Tuples from the

“Many” side with matching join
key

One pass, minimal memory
usage

R1

R2

R3

S1

S2

S4

R1 S2

R2 S4

R3 S1

R4 S3

S4

72

Many-to-Many Joins

• The worst

Need to hold ALL Tuples with a
given key in memory
• For both sets

Cross one set against the other
• Ugh

R2

R3

S1

S2

S4

S2

S4

R3 S1

R4 S3

S4

R2

R1 S2

R2 S4

It’s actually only bad when both sets are large and the many is also large

73

How to (inner) Join on MapReduce

•There are 3 options!
• Hash Join (aka Broadcast Join, Side-Loaded Join, or

Replicated Join)
• Map-Side Join (like the map-side cross…a bit)
• Reduce-Side Join (aka Shuffle Join or Repartition

Join)

This is also ordered by “goodness”

Use a Hash Join if you can
Use a Map-Side join if you can
You always have Reduce-Side join, it can always be done

74

Hash Join

If one set is so small it easily fits into memory of a single node then:

• Load it into every mapper as a hash table
• Each Mapper joins its split against the hash table
• Map-Side only, can be pipelined
• Fast
• IF

You know the story of the “if” reply, right?
So the legend goes:

King Philip II of Macedon had conquered most of the Greek city states, and sent Sparta a
message
“Should I come to Sparta as a friend or a foe?” (asking them to surrender, in other words)

The Spartan reply was one word. “No”

This angered Philip, who said “If I take Laconia, I shall turn you all out” (banish them)

The Spartan reply was “If”

(So Philip did invade, devastate Laconia, and do what he promised, eject the Spartans. Still,
emotionally speaking Philip was equally devastated)

A witty one-word reply is called a “Laconic response”. The fact that being Laconic lead to
bad outcomes is also something important to remember.
Don’t taunt people, basically.

75

“What are you going to do, invade me?”
-- State invaded

75

Map Side Join

Remember what we did for a cross join? Sure ya do.

This is a bad idea. Unless…

What if both files are sorted by key and split by the same partitioner?

Oh, in that case – the mappers can join row by row

76

Map Side Join

Use it if:
• Both tables (or subqueries) are sorted and partitioned by the join key
• When is this reasonable to expect?

77

Reduce-Side Join

Mappers – MultipleInputFiles class

Basic Idea:
Each mapper emits its stuff, key = join key

Reducer gets keys in sorted order, easy to join them together

OR IS IT?

78

Reduce-Side, 1-to-1 join

Reducer always gets 1 key per
subquery. Join is straightforward

Need to tag each tuple with its
source, but the sort order doesn’t
matter.

R1

R2

R3

R4

R1 S2

R2 S4

R3 S1

R4 S3

79

Reduce-Side, 1-to-many join

Oh, I know this!
Reducer holds the tuple from the 1-side in memory, then joins with all
Of the many-side tuples with the same key

Wait: How did the one side arrive first???

80

Remember: Secondary Sorting Pattern

Join Key -> Map Reduce Key ✗

(Join Key, Origin) -> Map Reduce Key 🗸

Just make sure the partitioner only cares about the join key, and the
sort order puts the “one” side first

81

Aside: Tertiary Sorting

If your query is like:
SELECT a.key, a.thing, b.other from a JOIN b ON key ORDER BY a.key,
a.thing

If you’re doing a reduce-side join anyway…might as well have the keys
by
(a.key, origin, a.thing_or_nothing)

Now the values arrive sorted by the sort column, too!

Of course if you’re JUST sorting by a.thing this won’t work. Sorting by key then by thing is
not the same!

This might not be a very common situations. Still, it can help you to avoid an extra pass in
some cases, even if they’re rare.

82

Reduce Side, Many-to-Many

Well, now you have to hold ALL tuples with one key from one set, and
cross against the other set.

That’s life.
Many-to-Many joins are expensive for large values of “many” because
the result is large.

83

Outer Joins?

The logic is the same, except you now have to handle the empty case
instead of skipping the unpaired tuple.

84

85

Build logical plan
Optimize logical plan
Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

Note: generic SQL-on-Hadoop implementation; not exactly what Hive does, but pretty
close.

86

big1

join

join

big2 small

select

project

Build logical plan
Optimize logical plan
Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

87

Right: The concrete syntax tree, aka the “logical plan”

Big1 and Big2 are joined, and this is then joined with small. It is then filtered (select
operator) based on big1.fx, big2.f1, big2.f2, and finally, projected (limited to 3 columns: fx,
fy, fz)

87

big1

join

join

big2 small

project

select

project

select

project
Build logical plan
Optimize logical plan
Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

88

Optimizations:

Big1 should be projected down to: fx, id1, id2. fx because its needed for the final
projection, id1 and id2 for the joins
Big2 should be projected down to: fy, id1, f1, f2. fy because it’s needed for the final
projection, id1 for the join, f1 and f2 for the “WHERE” selection

Big1 and Big2 should then be filtered by the “WHERE” clauses.

Then, there are fewer tuples to join. We no longer need a post-join filter as none of the
“WHERE” clauses involve comparisons that are only valid on the joined tables. The final
projection is still needed to remove the columns used as join keys and select criteria

88

big1

join

join

big2 small

project

select

project

select

project

Reduce-side join?
Map-side join?
Hash join?

Build logical plan
Optimize logical plan
Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

89

Reduce-side join?
Map-side join?
Hash join?

There are 3 types of joins that can be used.
Assumption: small is small, so a hash join is suitable.

89

big1

shuffle
J

hashJ

big2 small

sink

scan scan
Build logical plan
Optimize logical plan
Select physical plan

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

90

Big1 JOIN Big2 is a reduce-side (or “shuffle”) join. They’re big so hash is not suitable. We
can’t assume they’re co-partitioned so map-side is also not suitable.

Scan means “a full table scan” – this pipelines both the selection and projection.

“Sink” means “write the output” – this is pipelined with the projection

90

big1

shuffle
J

hashJ

big2 small

sink

scan scan
Build logical plan
Optimize logical plan
Select physical plan

Map
Reduce

Map

Putting Everything Together
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

91

Two MapReduce Jobs.

Job1 – Mapper does the selection + projection scan, and keys each tuple with (id1, source).
Reducer does the join, and writes to an intermediate file.

Job2 – Loads intermediate file. Mapper does the hash join with small1, and writes the final
output (no reducer phase)

91

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

big1

shuffle
J

hashJ

big2 small

sink

scan scan
Build logical plan
Optimize logical plan
Select physical plan

Map
Reduce

Putting Everything Together

92

That previous plan SUCKS.
A hash join can be done on either side. Any of the “map-side” operators can also be
pipelined into the reduce phase, too.

Just one job.

Mapper: selection and projection on big1, big2, keys are (id1, source). (How source is
tagged will depend on the arity of the relationship)

Reducer: three-way join. Do the cross to join based on id1 key, then cross these tuples with
the small hash table). Then do the final column projection and write the results to HDFS.

92

Schema?

How does it know the format of the tables? How
does it know the column names?

Metadata

Somewhere on HDFS is a file that says “big1 means
this HDFS file with this schema”

93

Spark?

Spark does the planning already, and writing Spark is pretty close to writing imperative
queries:

Most Relational operators are RDD transformations:
Select / Project: (Base RDD or .filter) / .map
Join : .join
Union : .union
Cartesian Product: .cartesian
Count: .count
Sum : .sum , .reduce(_+_)

THAT’S A BUTT

94

Spark SQL: Physical Execution

95

Spark’s join will do map-side or reduce-side automatically, depending on whether it’s a
narrow or a wide dependency.

If you want a hash join, use a broadcast variable (i.e. what you did in A2)

95

Or…

Spark DataFrames are like Tuple RDDs but with named columns
DataFrame API operators are named like the SQL operators

You can use these directly, or use sqlContext.sql(queryString)

Spark SQL can read your HIVE metadata for easy migration!

96

Two Options

SELECT dept.name, count(dept.name) FROM employees JOIN dept ON
(employees.did = dept.id) WHERE employees.title = “intern”
GROUP BY dept.id

employees.join(dept, employees(“did”) === dept(“id”)).
where(employees(“title”) === “intern”).
groupBy(dept(“id”), dept(“name”)).agg(count(dept(“name”)))

What on Earth is all that noise?

In Scala at least, a dataframe, when indexed, returns a column. This, like an RDD or
DataFrame, is “lazy”

column === column returns a selector function that matches column-to-column for
equality.
Count(column)

97

Spark Dataframes

A Dataframe is like a
Tuple RDD except:
• Different operators
• Each element of the

tuple is called a
“column”

• Each column has a
name!

Image: Microsoft Stock Art. “Columns”

98

Creating a Dataframe (451 Edition)

val myRDD =
sc.textFile(“marks.csv”).map(_.split).

map(attrs =>(attr[0].toInt, attr[1],
attr[2].toFloat))

val myDF = myRDD.toDF(“studentid”, “component”,
“mark”)

This will infer the schema based on the data types in the RDD, and will set all columns to
allow nulls.
If you don’t give names to the columns, they’ll default to _1, _2, etc.

99

Creating a Dataframe (431 Edition)

myRDD = sc.textFile(“marks.csv”).map(lambda
line: line.split()).

map(lambda attrs:(int(attr[0]), attr[1],
float(attr[2])))

myDF = myRDD.toDF(“studentid”, “component”,
“mark”)

This will infer the schema based on the data types in the RDD, and will set all columns to
allow nulls.
If you don’t give names to the columns, they’ll default to _1, _2, etc.

100

Specify a Schema

val schema = StructType(Array(
StructField(“username”, StringType, false), // not nullable
StructField(“title”, StringType, false),
StructField(“salary”, IntType, true)))

schema = StructType([\
StructField(‘username’, StringType(), False),\
StructField(‘title’, StringType(), False),\
StructField(‘salary’, IntType(), True)])

Top is Scala, bottom is Python

You can pass this in to the toDF function instead of just passing in the column names. Now
it knows the Schema.

101

Loading Directly

peopleDF =
spark.read.format("json").load("people.json")

Or

people2 =
spark.read.format(“csv”)
.option(“inferSchema”, “true”)
.option(“header”, “true”).load(“people.csv”)

(Other than the missing val, this is both Python and Scala)

“spark” here is a “SparkSession” object. It’s called “spark” by default in spark-shell /
pyspark. You create it in a similar way.

The JSON file should contain an array of objects. Their attributes are used as the columns.
E.g. you’d have
[{“name” : “Bob”, “department” : “IT”, …}, …]

JSON is typed (to an extent) so the types should all be correct. If you want control over
nullability you should still provide a schema

You can chain .options if you want to change settings. In the CSV example:
inferScheme means “guess the column type”
Header means “the first row contains the column names).

102

How to
Query a
Dataset

• You first register it

people.createOrReplaceTempView
("people")

• Then you query it

teens = spark.sql("SELECT
name, age FROM people
WHERE age BETWEEN 13 AND
19")

Spark can also have tables registered permanently, either through it’s API or using an
existing HIVE install.

103

So we’re doing this on the SQL Assignment?

• Yes, though what “this” means depends on which course
• CS451: “this” means “translating a query to Spark RDD transformations”

• CS431: “this” means “Using Spark Dataframes”

Spark Code

SQL Query

You

104

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access
Schemas are good

Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions…

MapReduce is incompatible with DBMS tools

Source: Blog post by DeWitt and Stonebraker
105

See the forum row in the assigned readings ;)

105

Benchmarking Hadoop vs Vertica

• Vertica is an Analytical Database Management System
• Designed for Big Data and Clustering
• Fast
• Stonebraker (you might recognize the name from the blog post)

106

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Grep

107

The upper segments of each Hadoop bar in the graphs represent the execution time of the
additional MR job to combine the output into a single file.

107

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Select

108

108

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

se
co

n
ds

Vertica Hadoop

Figure 7: Aggregation Task Results (2.5 million Groups)

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

se
co

n
ds

Vertica Hadoop

Figure 8: Aggregation Task Results (2,000 Groups)

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Aggregation

109

109

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

se
co

n
ds

¬
 2

1
.5

¬
 2

8
.2

¬
 3

1
.3

¬
 3

6
.1

¬
 8

5
.0

¬
 1

5
.7

¬
 2

8
.0

¬
 2

9
.2

¬
 2

9
.4

¬
 3

1
.9

Vertica DBMS−X Hadoop

Figure 9: Join Task Results

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank, SUM(adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN Date('2000-01-15’) AND Date('2000-01-22’) GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank FROM Temp ORDER BY totalRevenue DESC LIMIT 1;

Hadoop vs. Databases: Join

110

110

Wasn’t this supposed to be fast?

Well, yes, at some things. Like full table scans.

Most of these look like the fabled “full table scan” though. What
gives?

It turns out, parsing text SUCKS

111

Aside: Dan’s Tale of Text being Bad

• My thesis involved loading a database of thousands of proteins

ATOM 2384 N ASN 12 -25.781 -17.512 27.342 1.00 53.51

ATOM 2385 CA ASN 12 -26.388 -17.512 28.686 1.00 53.76

...

Loading took ~10 minutes (2007 era)

Convert to binary. Each row is

2 bytes (AA#) 1 byte (AA type) 1 byte (pad) 3 * 4 bytes (coordinates)

Loading takes ~5 seconds

Really? Yes, really.
Using a string stream it’s even worse, taking an HOUR to load. C++ sucks, C rules. atoi and
atof are dramatically faster than istringstream::operator>>
But nothing is faster than just grabbing bytes as you find them.

(It “probably” should have at least use htoni and ntohi to avoid endian issues for a file built
on one host and read from another with different endian…but I was a grad student, give me
a break)

112

Hadoop is slow because strings are
slow?

Yeah, basically.

Loading lines, splitting
on whitespace, parsing
integers, these are all
very slow operations.

113

Solution?

• Use a binary format
• This needs a schema
• A schema separates logical and

physical views
• Abstraction is a wonderful thing

114

Logical

Physical How bytes are actually
represented in storage…

R1

R2

R3

115

Step 1. Figure out how a rectangle, square, rounded-rectangle, and circle are represented
as bytes.
Step 2. Figure out how rows and columns are arranged

115

R1

R2

R3

R4

Row store

Column store

Row vs. Column Stores

116

Each column could be its own file, too.

We have to do one or the other, or something else along the same lines.
A file is 1 dimensional. You need SOME way of projecting high dimensional data into 1D
sequence of bytes

116

Row vs. Column Stores

Row stores
Easier to modify a record: in-place updates

Might read unnecessary data when processing

Column stores
Only read necessary data when processing
Tuple writes require multiple operations

Tuple updates are complex

117

117

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

These are well-known in traditional databases…

118

Vertica (from the “Hadoop is bad” slides) uses column stores. Many RDMS do as well.

118

Compression?

• Each column within the column store is grouped together
• GZIP streams will do well at compressing
• Can go back to Vint, Simple9, etc encodings for integer columns.

Why?

Why? Repetition. Repetitive columns are grouped together.

Whether Vint gains you anything will depend on the distribution

119

Column store

Run-length encoding example:

is a foreign key, relatively small cardinality

In reality:

…

Encode:

4 3 1 …

(even better, boolean)

Columns Stores: RLE

120

Read Efficiency?

Binary is faster: See my earlier slide
about loading protein databank files

Column stores are fast:
• Only need the relevant columns.

121

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

On Jimmy’s laptop: 409ms
(avg over 10 trials)

On Jimmy’s laptop: 174ms
(avg over 10 trials)

Which is faster?
Why?

122

I get nearly the same numbers on my linux server at home. This is called “loop unrolling”.
Compilers will often do this optimization automatically.
Scala’s JIT compiler doesn’t have time for optimizations though.

122

Compiled Queries

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

123

Compiled Queries

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

Example LLVM query template

124

I see…

Databases are faster
because they use

binary column stores,
not plain text files.

It’s too bad Hadoop
can’t do that!

Wait, hold on, why
can’t Hadoop do that?

125

It CAN Do That

Image: Parquet flooring. You’ll see why in a second…

126

Apache Parquet

A columnar storage format available to any project
in the Hadoop ecosystem, regardless of the choice

of data processing framework, data model or
programming language.

127

par-KAY – like the flooring. See it in the icon? Like a school gym.

127

Parquet in MapReduce

• Read: ParquetInputFormat
• Write: ParquetOutputFormat

But…the ParquetInputFormat returns Group values. You cannot select
the elements of a Group, they’re private. You have to convert to string,
then split

Pointless? (I think so)

128

Parquet in Spark SQL

myDF = spark.read.parquet(“path/to/parquet/file.parquet”)

…

otherDF.write.parquet(“path/to/output/file.parquet”)

129

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

Parquet gives us the top two things. Can we do the bottom two?

130

130

Vectorized Operators?

hive.vectorized.execution.enabled = true

spark.sql.parquet.enableVectorizedReader = true

(For Spark, the default is already true)

131

Compiled Queries?

HIVE (and PIG) are already compiled to Java code

Spark?

If you write an SQL query, yes, the plan will be compiled and optimized,
though only at runtime.

If you write using dataframe operators? Yes. Scala and Python can be
compiled

132

Compiling Spark SQL

SELECT x, y FROM z WHERE x * (1 – y)/100 < 434;

Interpret the predicate:
x * (1 – y)/100 < 434; => LessThan(Times(row(“x”), Minus(…))

Compile:
Feed AST of expression into Scala compiler:

row => row(“x”) * (1 – row(“y”)) / 100 < 434

SLOW!

FAST! (to run the query, at least…)

133

